SYNTHESIS OF 5-AMINO-5-DEOXY-0-D-ALLOFURANURONIC ACID DERIVATIVE, A SUGAR COMPONENT OF POLYOXINS SYNTHESIS IN NUCLEOSIDE ANTIBIOTICS, PART VII

Takehiko Naka, Takeshi Hashizume, and Masaaki Nishimura*

Department of Food Science and Technology, Kyoto University, Kyoto, Japan

(Received in Japan 28 November 1970; received in UK for publication 9 December 1970)

Polyoxins A - L, discovered by Suzuki, Isono and their coworkers¹⁾ are a group of antifungal nucleoside antibiotics produced by <u>Streptomyces cacaoi</u> var. <u>ascensis</u>. These antibiotics, except polyoxins C and I, are highly active against phytopathogenic fungi such as <u>Pellicuraria sasakii</u>, and now in practical use in this country as an agricultural fungicide. Structures of these antibiotics have recently been firmly established by the above investigators, and a 5-amino-5-deoxy-<u>D</u>-allofuranuronic acid has been found to be a commonly occurring sugar component of polyoxins. This paper deals with the first chemical synthesis of 5-amino-5-deoxy-q-<u>D</u>-allofuranuronic acid derivative. The sequence of reactions is shown in Chart 1.

The 1,2:5,6-di-O-isopropylidene- α -D-allofurance³⁾ (I) derived from D-glucose was benzoylated to give 3-O-benzoate, m.p. 75-76°; $[\alpha]_D^{22}$ +116°(c 1.0 acetone). The 3-O-benzoate was then converted into 3-O-benzoyl-1,2-O-isopropylidene- α -D-allofurance (II), m.p. 107-109°; $[\alpha]_D^{22}$ +117°(c 1.5 chloroform), by hydrolysis with 1.5% H_2SO_4 -70% ethanol in 70% yield.

After mesylation of II with mesyl chloride in pyridine, treatment of the dimesyl compound, m.p. $102-104^{\circ}$; [α] $_{D}^{22}$ $+102^{\circ}$ (c 1.5 chloroform), with sodium benzoate in boiling DMF^{4}) gave $1,2-\underline{0}$ -isopropylidene-3,5,6-tri- $\underline{0}$ -benzoyl- β - \underline{L} -talofuranose (III) in 55% yield, m.p. $156-158^{\circ}$; [α] $_{D}^{22}$ $+90^{\circ}$ (c 1.0 chloroform).

^{*} Present address: Research Laboratory Kao Soap Company Ltd., Tokyo, Japan

Chart 1.

Debenzoylation of III with sodium methoxide in methanol afforded 1,2-Q-isopropylidene- β -L-talofuranose in 75% yield, m.p. 100-101°; [α] $_D^{22}$ +52°(c 1.1 methanol), which, after treatment with dimethoxypropane containing catalytic quantity of p-toluenesulfonic acid, yielded 1,2:5,6-di-Q-isopropylidene- β -L-talofuranose (IV) in 65% yield, m.p. 86-87°; [α] $_D^{22}$ +30°(c 1.0 acetone), [lit, m.p. 85-86°; [α] $_D$ +31°(c 0.5 chloroform)].

Benzoylation of IV and subsequent hydrolysis by the same procedure descrived above gave the product (V), m.p. 96-98°; $[\alpha]_D^{22}$ +107°(c 1.6 chloroform), which was in turn tritylated and mesylated in pyridine to give 3-O-benzoyl-1,2-O-isopropylidene-5-O-mesyl-6-O-trityl- β -L-talofurancee (VI), $[\alpha]_D^{22}$ +50°(c 1.4 chloroform).

Inversion of VI with sodium azide in refluxing DMF gave 5-azido allofuranose derivative (VII) in 85% yield, $\left[\alpha\right]_{D}^{22}$ +79° (c 1.1 chloroform). The 5-azido derivative (VII) was hydrogenated over 10% palladium on charcoal in methanol and then benzoylated to 5-benzamido-3-Q-benzoyl-5-deoxy-1,2-Q-isopropylidene-6-Q-trityl- α -Q-allofuranose, $\left[\alpha\right]_{D}^{22}$ +67° (c 1.1 chloroform).

Detritylation of 5-benzamido derivative with acetone containing equivalent quantity of p-toluenesulfonic acid instead of hydrogen chloride⁶⁾ afforded 5-benzamido-3-Q-benzoy1-5-deoxy-1,2-Q-isopropylidene- α -D-allofuranose (VIII) in 70% yield, m.p. 206-208°; $[\alpha]_D^{22}$ +100° (c 1.2 chloroform).

Oxidation of VIII with potassium permanganate in acetone-acetic acid followed by esterification with diazomethane afforded methyl(5-benzamido-3-O-benzoyl-5-deoxy-1,2-O-isopropylidene- α -D-allofuran)uronate (IX) in 50% yield, m.p. 152-154°; [α] $_{\rm D}^{22}$ +112°(c 0.3 chloroform).

The nmr parameters of IX are shown in Table 1. The sequence of above reactions and nmr data support the structure of IX.

	Chemical shift (8)*		Coupling constant (Hz)	Chemical shift (δ)*	
H-1	5.88	doublet	(7. 2.0)	-сосс <u>н</u> 3	3.75
H-2	4.96	quartet	(J _{1,2} = 3.6)	-0)C(CH ₃) ₂	1.33, 1.55
H-3	5.55	quartet	$(J_{2,3} = 5.0)$	0 -32	1.55, 1.55
H-4	4.68	quartet	$(J_{3,4} = 9.0)$		
H-5	5.50	quartet	$(J_{4,5} = 3.5)$		
-N <u>H</u>	7.11	doublet	(J _{5,NH} = 8.5)		•
* ppm from internal TMS.					

Table 1. The nmr data of IX in CDCl₃ (60 MHz)

Acknowledgement: We thank Dr. T. Mitsui and his associates for the measurements of nmr spectra and for performing microanalyses, and Dr. T. Shingu for measuring nmr spectra.

References

- S. Suzuki, K. Isono, J. Nagatsu, T. Mizutani, Y. Kawashima, and T. Mizuno, J. Antibiotics, <u>A 18</u>, 131 (1965). K. Isono, J. Nagatsu, Y. Kawashima, and S. Suzuki, <u>Agr. Biol. Chem.</u>, <u>29</u>, 848 (1965). K. Isono, J. Nagatsu, Y. Kawashima, K. Yamagata, K. Sasaki, and S. Suzuki, <u>Agr. Biol. Chem.</u>, <u>31</u>, 190 (1967).
- 2. K. Isono and S. Suzuki, <u>Tetrahedron Lett.</u>, 203 (1968). K. Isono and S. Suzuki, <u>Tetrahedron Lett.</u>, 1133 (1968).
- 3. O. Theander, Acta Chem. Scand., 18, 2209 (1964).
- 4. D. H. Buss, L. D. Hall, and L. Hough, J. Chem. Soc., 1965, 1618.
- J. S. Brimacombe, P. A. Gent, and J. H. Westwood, <u>Carbohyd. Res.</u>, <u>12</u>, 475 (1970). J. S. Brimacombe, P. A. Gent, and J. H. Westwood, <u>J. Chem. Soc.</u>, <u>1970</u>, 1632.
- 6. R. L. Whistler and R. E. Gramera, J. Org. Chem., 29, 2609 (1964).